LHTC SKR ML 21001 [2.2]

多機能 GNSS 受信機 Multi Function GNSS Receiver

SEKIREI-R9P mark II

ライトハウステクノロジー・アンド・コンサルティング株式会社 Lighthouse Technology and Consulting Co.,Ltd.

もくじ

1. 本製品の特長	1
2. 本製品の動作	2
2.1 内部構成	2
2.2 外部接続	2
2.3 各部の名称と働き	4
3. 電源のオンとオフ(シャットダウン)	6
3.1 電源のオン	6
3.2 電源のオフ(シャットダウン)	6
3.3 通電起動モード	6
3.4 メモリ保持用電池	6
4. 本製品へのログインと遠隔操作	
4.1 PC 端末への VNC Viewer のインストール	
4.2 LAN 接続	8
4.3 本製品の IP アドレスの探索	8
4.4 VNC Viewer によるログイン	9
5. RTK-LIB による RTK 動作	12
5.1 ターミナルソフトウェアの準備	12
5.2 Ntrip Client としての動作例	12
5.3 Ntrip Server としての動作例	13
5.4 データロガーとしての動作例	14
5.5 USB 経由の高速通信	14
6. LTE 通信の設定	15
6.1 SIM カードの入手	15
6.2 SIM カードの挿入	15
6.3 APN の設定変更	17
7. EXP 端子の利用(上級者向け)	
7.1 ピン番号	
7.2 ピン割当て	
7.3 電源電圧出力	
7.4 ZED-F9Pの I/O 端子への入出力	
8. よくある質問	
9. 仕様	
10. 使用上の注意	24

1. 本製品の特長

本製品 SEKIREI-R9P mark II は、u-blox 社の高精度 GNSS モジュール ZED-F9P を搭載し、ラ ズベリーパイ財団が開発したシングルボードコンピュータ Raspberry Pi と組合せることにより、通信機 能や測位機能の面において、ソフトウェアによる多機能化を容易に実現し得るハードウェア環境を提供 する多機能 GNSS 受信機です。

■ ZED-F9Pを搭載

u-blox 社の高精度 GNSS モジュール ZED-F9P を搭載しています。

- 多チャンネルのマルチ GNSS 受信対応。
- L1/L2 帯の2周波受信対応。
- オンボード RTK による高精度測位。

■ Raspberry Pi を搭載

ラズベリーパイ財団が開発した Raspberry Pi 4 Model B を搭載しています。

- 本製品の内部で、UART 及び USB により Raspberry Pi と ZED-F9P とが接続されており、 ZED-F9P によるオンボード RTK による高精度測位や、ワイヤレス LAN、Bluetooth などの通 信による外部との連携が、ソフトウェアにより実現可能。
- Raspberry Pi の利用・応用やプログラミングに関する一般書籍や Web 情報が幅広く公開されているため、ユーザによる開発や改良が容易であり、柔軟で発展的な多機能化が可能。
- Raspberry Pi アドオン型の LTE 通信ボードである CANDY LINE 社の CANDY Pi Lite+ D(NTT ドコモネットワーク向け)を搭載しており、NTT ドコモの LTE 公衆回線を経由した通信 (Ntrip Caster との接続など)が可能*。

* 別途 SIM カードを用意していただく必要がございます。

- 本製品独自の電源制御ボードを内蔵しており、Raspberry Pi 単体では実現し難かった、電源 スイッチによる電源オンとシャットダウンを実現。
- SEKIREI-R9P からの強化

従来モデル SEKIREI-R9P に比べ、機能・性能が強化されました。

- シングルボードコンピュータが、従来の Raspberry Pi 3 Model B から Raspberry Pi 4 Model B へと変更され、CPU やメモリ、処理能力、通信速度などが向上。
- シングルボードコンピュータと ZED-F9P との間、シングルボードコンピュータと LTE 通信ボードとの間のシリアル通信(内部接続)について、従来の UART 接続に加えて、高速な通信を実現する USB 接続を追加。高頻度の測位データ取得・転送などに適応。
- 内部基板構成の設計改良によって、SIM カードへのアクセス(抜き差し)性が向上。
- ZED-F9P が備える多様な I/O 端子について、外部からアクセス可能な EXP 端子と PPS 端 子を背面パネルに配置。

2. 本製品の動作

2.1 内部構成

- ■本製品の内部では、本製品を構成するボードが 40 ピンのバスラインで結ばれています。バスラインは2種類用意されており、ラズベリーパイの拡張 GPIO ラインと、本製品独自のバスラインとが、ブリッジボードを介して相互接続されています。
- ラズベリーパイの拡張 GPIO ラインには、次の2枚のボード(基板)がスタック接続されています。
 - シングルボードコンピュータ Raspberry Pi 4 Model B
 - LTE 通信ボード CANDY Pi Lite+ D(NTT ドコモネットワーク向け)
- 本製品独自のバスラインには、次の2枚のボード(基板)がスタック接続されています。
 - 電源制御ボード
 - GNSS 受信ボード

- ① LTE 端子×2
 - LTE 通信アンテナを接続するための SMA-J 型の端子です。 付属品の LTE 通信用 SMA ア ンテナを接続してください。
 - アンテナを2本接続することによってダイバーシティ構成となり、LTE 通信がより安定します。

- ② EXP 端子
 - ZED-F9P の I/O 端子にアクセスするための外部拡張(Expand)端子です。詳細は、本書「7. EXP 端子の利用(上級者向け)」をご覧ください。
- ③ GNSS 端子
 - GNSS 受信アンテナを接続するための SMA-J 型の端子です。
 - 直流 3.3V が重畳供給されており、アクティブアンテナ(LNA内蔵型のアンテナ)の接続が可能です。ただし、最大電流が 50mA を超えないよう注意してください(超えた場合には本製品の故障に至るおそれがございます)。
 - ZED-F9P の性能を発揮するためには、L1 帯及び L2 帯の 2 周波に対応するアンテナの接続 を推奨します。
- ④ F9P 端子
 - ZED-F9PとUSBシリアル通信を行うための Micro-B型 USB の端子です。
 - ⑤の DC IN 端子への電源供給がない場合、あるいは本製品の電源が切れている場合においても、ZED-F9P へ単独で電源供給しつつシリアル通信が可能です。
 - ■本端子に PC などの機器を接続している間は、ZED-F9P の USB 通信がシングルボードコン ピュータの USB 端子から自動的に切り離され、代わりに本端子へと接続されます。その後、本 端子への PC 機器などの接続を外しますと、ZED-F9P の USB 通信は自動的にシングルボー ドコンピュータの USB 端子へ再接続されます。
 - ■本製品の電源が投入された状態で、本端子に PC などの機器を接続した後、その接続を外した際には、ZED-F9P の USB 通信は自動的にシングルボードコンピュータの USB 端子へ再接続されますが、シングルボードコンピュータが ZED-F9P との USB 接続を再認識しない場合が多くあります。その場合には、本製品を再起動することにより、シングルボードコンピュータにZED-F9P との USB 接続を認識させてください。
- ⑤ DC IN 端子
 - 本製品に電源を供給するための φ 2.1/5.5mm 標準型 DC 入力端子です。 付属品の AC アダ プタを接続してください。
 - 付属品以外のACアダプタやその他DC電源を接続しても問題ありませんが、電圧範囲と電流 容量に注意してください。

⑥ PPS 端子

- ZED-F9P の TIMEPULSE 端子(53 番ピン)に内部接続されています。
- 出力される信号の詳細などについては、ZED・F9Pのマニュアルを参照してください。
- ⑦ LAN 端子

■ シングルボードコンピュータを Ethernet 接続するための RJ-45 型の端子です。

⑧ USB 3.0 端子×2

■ シングルボードコンピュータに外部デバイスを接続するための USB 3.0 端子 (タイプ A)です。

⑨ USB 2.0 端子×2

■ シングルボードコンピュータに外部デバイスを接続するための USB 2.0 端子 (タイプ A) ですが、 本製品内部で ZED-F9P 及び LTE 通信ボードと接続されているため、これらの端子は使用でき ません。

2.3 各部の名称と働き

- ① PWR スイッチ
 - 本製品の電源をオン/オフ(シャットダウン)するための押しボタンスイッチです。
 - 電源の状態により、ボタン内の青色 LED が点灯/点滅します。
 - 消灯 : 電源が投入されていません。
 - 点灯 : シングルボードコンピュータが動作しています。
 - 点滅 : シングルボードコンピュータの起動/シャットダウン処理中です。

LTE インジケータ(緑色 LED)

■ LTE 通信の	D動作状態を示すインジケータです。
消灯	:LTE 通信ボードが未搭載あるいは異常です。
	IMD、客信事、「いた法操性報本本

- 点灯 : LTE 通信ボードは待機状態です。
- 点滅 : LTE 接続による通信中です。
- ③ WiFi インジケータ(黄色 LED)
 - 無線 LAN 通信の動作状態を示すインジケータです。
 ※ 将来の機能拡張用に実装されているインジケータです。現在のところは、本製品の動作に関係なく、インジケータ機能確認のために、5秒間に1回短く点灯します。
- ④ BT インジケータ(青色 LED)
 - Bluetooth 通信の動作状態を示すインジケータです。
 - ※ 将来の機能拡張用に実装されているインジケータです。現在のところは、本製品の動作に関係なく、インジケータ機能確認のために、5秒間に1回短く点灯します。
- 5 PPS インジケータ(緑色 LED)
 - GNSS 信号の受信状態を示すインジケータです。
 - 電源投入後は受信状態に関係なく点灯します。ZED-F9PがGNSS信号を受信して測位状態

となると1 秒間隔で滅灯します(Pulse Per Second)。

- 点灯条件等の詳細については、ZED·F9Pのマニュアルをご参照ください。
- **ZED-F9P** の **TIMEPULSE** 端子(53 番ピン)からの出力に対して負論理で点灯/消灯しま す。
- ⑥ RTK インジケータ(黄色 LED)
 - ZED-F9P のオンボード RTK の動作状態を示すインジケータです。
 - 点灯条件等の詳細については、ZED·F9Pのマニュアルをご参照ください。
 - ZED-F9P の RTK_STAT 端子(20 番ピン)からの出力に対して負論理で点灯/消灯しま す。
- ⑦ LOG インジケータ(青色 LED)
 - データロギング機能の動作状態を示すインジケータです。
 - ※ 将来の機能拡張用に実装されているインジケータです。現在のところは、本製品の動作に関係なく、インジケータ機能確認のために、5秒間に1回短く点灯します。

3. 電源のオンとオフ(シャットダウン)

3.1 電源のオン

DC IN 端子に電源(付属の AC アダプタなど)を接続して、本製品の電源が切れた状態(PWR スイ ッチが消灯している状態)で PWR スイッチを一度押すと^{**}、PWR スイッチが青色に点滅を開始し、本製 品に電源が投入されます。

* 通電起動モード(3.3節)がONに設定されている場合には、DCIN端子に通電した際に、PWR スイッチを押すことなく、自動的に電源が投入されます。

電源投入直後には、WiFi、BT、PPS 及び LOG の四つのインジケータが点灯し、シングルボードコンピュータの起動シーケンスが実行されます。

シングルボードコンピュータが正常に起動されると、LTEのインジケータが点灯し、WiFi、BT及び LOGの三つのインジケータは、5秒に1回の周期で短く点滅を開始します。

GNSS 端子へアンテナが正しく接続されていて、ZED-F9P が正常に測位を開始すると PPS インジ ケータは1秒間隔の点滅に変化します。

LTE 通信が正常に開始されると、LTE のインジケータは点滅を開始します。

3.2 電源のオフ(シャットダウン)

電源をオフにする前に、シングルボードコンピュータ(Raspberry Pi)上で実行しているプログラム、シェルスクリプトなどを、できる限り停止させることを推奨します。

本製品に電源が投入された状態(PWR スイッチが青色に点灯している状態)で PWR スイッチを一 度押すと、本製品の電源をオフにする(シャットダウンする)ために、シングルボードコンピュータへシャッ トダウンが要求され、PWR スイッチのインジケータが速い点滅(2.5Hz)を開始します。

その後、シングルボードコンピュータが要求を受け付けてシャットダウンのための処理を開始すると、 PWR インジケータが遅い点滅(0.5Hz)に変化し、その後 20 秒程度で電源がオフとなり、すべてのイン ジケータ(PWR スイッチを含む)が消灯します*。

* F9P 端子に PC 端末等が接続されている場合(2.2節④)には、PPS 及び RTK のインジケータ は、電源のオフにかかわらず既定の動作を継続します(必ずしも消灯しません)。

3.3 通電起動モード

本製品の DC IN 端子への電源供給が開始(通電)されたとき、PWR スイッチを押す必要なく、自動的に電源を投入する通電起動モードが用意されています。

通電起動モードの ON/OFF は、電源制御ボードの DIP スイッチのうち、4番スイッチの ON/OFF により選択されます。電源制御ボードの DIP スイッチは、6.2節②の写真において、左側の下層にある 緑色の基板上にあり、電源スイッチの右側に実装されています。 DIP スイッチの切替は、必ず DC IN 端 子に電源が供給されていない状態で実施してください。

3.4 メモリ保持用電池

本製品にはメモリ保持用電池として、電源制御ボード上に3Vコイン型電池のCR2032が実装されています。メモリ保持用電池は、シングルボードコンピュータの時刻情報を保持するために電源制御ボードに実装されているRTC(Real Time Clock)回路と、GNSS受信ボード上のZED-F9Pへ、それぞれ

DC 3V を供給しています。

電源を切断して再投入した際に、シングルボードコンピュータの時刻情報が異常となる、あるいは GNSS 受信状態がよいにもかかわらず ZED-F9P の測位開始が遅くなるといった事象が見られた際に は、メモリ保持用電池の交換により解消する場合があります。

メモリ保持用電池は、6.2節②の写真において、左側の下層にある緑色の基板上にあり、電源スイッ チの左側に実装されています。コイン電池 CR2032 を縦に(基板に対して垂直に)挿入する形態であり、 外側(写真の左側)が+、内側(電源スイッチ側)がーになっておりますので、極性に注意して交換してく ださい。

4. 本製品へのログインと遠隔操作

本製品は、シングルボードコンピュータの Raspberry Pi 4 Model B を搭載しており、これに LAN 経 由でログインすることにより、様々な操作やプログラミングによる高機能化が可能となります。

ここでは、Windows PC に、Real VNC 社が無償提供する VNC Viewer をインストールして本製品 を遠隔操作する方法を紹介します。本方法の詳細や他の方法による接続については、本章の解説のほ か、一般に普及している解説書籍や Web による検索情報などもご活用ください。

4.1 PC 端末への VNC Viewer のインストール

PC 端末に VNC Viewer をダウンロードし、インストールしてください。 現時点で、公式ページの URL は次の通りですが、変更の可能性がありますので、インストール方 法の詳細は Web 検索などをご活用ください。

[VNC Viewer ダウンロード] https://www.realvnc.com/en/connect/download/viewer/

4.2 LAN 接続

VNC Viewer をインストールした PC 端末と本製品とを同じ LAN に接続してください。 本製品は有線 LAN に接続されると、DHCP により(動的に)IP アドレスを取得する設定になって います。

4.3 本製品の IP アドレスの探索

遠隔操作に必要な情報となる、本製品の IP アドレスを PC 端末側から探索します。

① コマンドプロンプトの起動

Windows キーと R キーとを押すと、ダイアログ「ファイル名を指定して実行」が開きます。「名前」 のテキストボックスに「cmd」と入力して、ボタン「OK」をクリックしてください。

💷 ファイル	名を指定して実行	×
	実行するブログラム名、または開くフォルダーやドキュメント名、インター ネットリソース名を入力してください。	
名前(<u>O</u>):	cmd	-
		_
1 L	OK キャンセル 参照(B)	

ウィンドウ「コマンドプロンプト」が表示されます。

② Ping の連続送信

ウィンドウ「コマンドプロンプト」に以下のコマンドを入力してください。 ただし、IP アドレスのセグメント(XXX.YYY.ZZZ の部分)は、PC 端末の IP アドレスと同一にしてください。

[Ping の連続送信] <Enter>:Enter Key for /l %i in (0,1,255) do ping -w 1 -n 1 XXX.YYY.ZZZ.%i<Enter>

実行後、XXX.YYY.ZZZ.0~XXX.YYY.ZZZ.255 に連続して ping が送信されます。数十秒程 度で完了し、プロンプトの入力状態に戻ります。

③ ARP テーブルの取得

ウィンドウ「コマンドプロンプト」に以下のコマンドを入力してください。

【ARP テーブルの取得】 〈Enter〉: Enter Key arp -a<Enter>

ARP テーブルが表示されます。

物理アドレスが「dc-a6-32-」で始まっている行が、本製品(Raspberry Pi)のアドレス情報です。 当該行のインターネットアドレス「XXX.YYY.ZZZ.nnn」を確認してください。

4.4 VNC Viewer によるログイン

① VNC Viewer の起動

4.2でインストールした VNC Viewer を起動します。 初回のみ、ウィンドウ「Get started with VNC Viewer」が表示されます。必要に応じて「Send anonymous usage data to help improve VNC Viewer」のチェックを外して、ボタン「GOT IT」 をクリックして次に進んでください。

② VNC Viewer の接続

VNC Viewer の制御ウィンドウが表示されます

V2 VNC Viewer		
File View Help		
	XX.YYY.ZZZ.nnn	
	Connect to address or hostname "XXX.YYY.ZZZ.nnn"	
		13

画面上部のテキストボックスに4.3節③で確認した、本製品の IP アドレスを入力し、Enter キー を押してください。

初回の接続時のみ、ウィンドウ「Identity Check」が表示されますので、ボタン「Continue」をクリックして、次に進んでください。

🕼 Identity Check	×
	Uplicate VNC Server identity
VNC Viewer has n identity matches	o record of connecting to this VNC Server, but its that of another known VNC Server.
VNC Server:	192.168.49::00 (TCP)
Matching VNC Se	rver: 192.168. 5:: 00
Catchphrase:	
Signature:	
Are you sure you	want to connect? You won't be warned about this again.
	Continue

ウィンドウ「Authentication」が表示されます。Username に「sekirei」、Password に「receiver」 をそれぞれ入力し、必要に応じて「Remember password」にチェックを入れてください。

V2 Authentic	ation X
	Authenticate to VNC Server 192.1684 (1990): 5900 (TCP)
Username:	sekirei
Password:	Ø
Remembe	er password <u>Forgot password?</u>
Catchphrase: Signature:	Stadium vendor group. Ship liter torpedo.

ボタン「OK」をクリックすると、本製品に接続され、Raspbian OS(シングルボードコンピュータ Raspberry Piの OS)のデスクトップ画面がリモート表示されます。

Raspbian OS のログインウィンドウが表示されます。ユーザ名は自動的に「sekirei」と表示されますので、パスワードとして「receiver」を入力してください。

	sekirei	•
Shut	Down	l og In

5. RTK-LIB による RTK 動作

本製品には、東京海洋大学の高須知二氏が開発したオープンソースの GNSS 解析ソフトウェア RTKLIB ver.2.4.2 がインストールされています。

RTKLIB のライセンス条項、利用条件等については、本製品の以下のフォルダにあるテキストファイ ルをお読みください。

[RTKLIB readme.txt]
/home/sekirei/RTKLIB/readme.txt

RTKLIB を使用することによって、本製品に内蔵された ZED-F9P によるオンボード RTK 測位を比較的容易に実現することが可能です。

RTKLIB によって多くのことを実現することが可能です。様々な RTKLIB の使い方を含む詳細については、一般の解説書籍や Web 検索情報などをご参照ください。

5.1 ターミナルソフトウェアの準備

PC端末から VNC Viewer を起動し、本製品にログインしてください(4.参照)。

Raspbian OS のデスクトップにおいて、画面上部のバーに並んでいるアイコンのうち、Terminal のアイコンをクリックしてください。

ターミナルソフトウェア Terminal が起動され、プロンプト「sekirei@SKR-R9P2:~ \$」に続いてカー ソルが表示されます(入力待ちの状態)。

	sekirei@SKR-R9P2: ~	~ ^ X
File Edit Tabs Help		
ekirei@SKR-R9P2:~ \$		

5.2 Ntrip Client としての動作例

本製品を Ntrip Client として動作させて、Ntrip Caster に接続し、配信された基準局 RTCM ストリームを ZED-F9P の UART1 に入力してオンボード RTK 測位を行う、すなわちローバ局として使用する例を示します。

ここでは例えば、Ntrip Caster の IP アドレスが 192.168.0.101、ポート番号が 1234、ユーザ名が user、パスワードが password、マウントポイントが BASE である場合には、本書5.1節のターミナルウ

ィンドウにおいて、以下のコマンドを実行します。

```
[Ntrip Client としての動作例] <Enter>:Enter Key
~/RTKLIB/app/str2str/gcc/str2str -in
ntrip://user:password@192.168.0.101:1234/BASE -out
serial://serial0:38400#UBX<Enter>
```

se				~ ^ >
File Edit Tabs Help				
<pre>sekirei@SKR-R9P2:~ \$ cd ~/RTKLI sekirei@SKR-R9P2:~/RTKLIB/app/s tood BASE -out serial://serial stream server start 2021/02/15 06:46:21 [-C] 2021/02/15 06:46:26 [CC] 2021/02/15 06:46:31 [CC]</pre>	EB/app/str2s str2str/gcc L0:38400#UBX 0 B 3767 B 7632 B	tr/gcc \$./str2str -in ntr: 0 bps 6162 bps (0) 6168 bps (0)	ip:// //// and. //// and.///// Base An an ang// ang ana base	di ngnj: 6460/jt

正常に動作が開始すると、「stream server start」と表示され、続いて5秒間隔でステータスが表示されます。通信バイトの xxxxx B が徐々に増えることを確認してください。ZED-F9P のオンボード RTK 測位が動作すると、正面パネルの RTK インジケータ(黄色 LED)が点灯します。

RTKLIB の動作を停止するためには、CTRL キーと C キーを押してください。「stream server stop」と表示され、動作が停止します。

5.3 Ntrip Server としての動作例

本製品を Ntrip Server として動作させて、Ntrip Caster に接続し、ZED-F9P の UART1 から出 力されたストリームをアップロードする方法例を示します。

あらかじめ、本製品の F9P 端子 (Micro-B USB) に PC 端末をつなぎ、u-blox 社の無償ソフトウェ ア u-center などを使用して、ZED-F9P の UART1 に RTCM ストリームを出力させておけば、基準 局として本製品を用いることが可能です。

ここでは例えば、Ntrip Caster の IP アドレスが 192.168.0.101、ポート番号が 1234、パスワード が password、マウントポイントが BASE である場合には、本書5.1節のターミナルウィンドウにおいて、 以下のコマンドを実行します。

【Ntrip Server としての動作例】 <Enter>: Enter Key

~/RTKLIB/app/str2str/gcc/str2str -in serial://serial0:38400#UBX -out ntrips://:password@192.168.0.101:1234/BASE<Enter>

seki						
File Edit Tabs Help						
<pre>sekirei@SKR-R9P2:~ \$ cd ~/RTKL1 sekirei@SKR-R9P2:~/RTKL1B/app/s ips://:dfp@jd.lbd.lbd.lbd.lbd.lbd.</pre>	IB/app/str2s str2str/gcc 1000001	str/gcc \$./str2sti	-in serial://serial0:38400#ubx	-out	nt	rÎ
stream server start	0.0	0 hno				1
2021/02/15 06:39:44 [CC]	10197 B	16346 bps	(1) U			
2021/02/15 06:39:49 [CC]	20391 B	16327 bps	(1) 4.34 .34.34.04/00000000			
2021/02/15 06:39:54 [CC]	30636 B	16338 bps				1

正常に動作が開始すると、「stream server start」と表示され、続いて5秒間隔でステータスが表示されます。通信バイトの xxxxx B が徐々に増えることを確認してください。

RTKLIB の動作を停止するためには、CTRL キーと C キーを押してください。「stream server stop」と表示され、動作が停止します。

5.4 データロガーとしての動作例

ZED-F9Pの UART1の出力データをファイルにロギングすることが可能です。

ここでは例えば、保存先のディレクトリが/home/sekirei/data、ファイル名が f9p.txt である場合には、本書5.1節のターミナルウィンドウにおいて、以下のコマンドを実行します。

【データロガーとしての動作例】 <Enter>: Enter Key

```
~/RTKLIB/app/str2str/gcc/str2str -in serial://serial0:38400#ubx -out
file:///home/sekirei/data/f9p.txt<Enter>
```

	sekirei@SKR				p/str2									×
File Edit Tabs Help														
sekirei@SKR-RSP2:~/RTKLIB/app/ ome/sekirei/data/f9p.txt stream server start	str2str/gcc	\$./sti	2str		erial	://s	erial	0:384	00#ub	x -ou	t f	ile	://	7h
2021/02/15 06:55:43 [CC] 2021/02/15 06:55:48 [CC]	0 B 10545 B	0 16863	bps bps											
2021/02/15 06:55:53 [CC]	21090 B	16863	bps											

正常に動作が開始すると、「stream server start」と表示され、続いて5秒間隔でステータスが表示されます。通信バイトの xxxxx B が徐々に増えることを確認してください。

RTKLIB の動作を停止するためには、CTRL キーと C キーを押してください。「stream server stop」と表示され、動作が停止します。

5.5 USB 経由の高速通信

本製品のシングルボードコンピュータと ZED-F9P との間は 2 系統のシリアル通信(UART 及び USB)で接続されていますが、ここまで5.2節~5.4節は、UART 通信を使用して RTK-LIB を動作 させました。

本製品は、より高速な通信が可能となる USB 通信を使用することも可能です。

UART 通信の代わりに USB 通信を用いる場合には、5.2節~5.4節にて例示したコマンドの文字 列の中で、「serial0:38400」を「ttyACM0:115200」に置き換えて実行してください。

6. LTE 通信の設定

本製品は、CANDY LINE 社の Raspberry Pi アドオン型の LTE 通信ボード CANDY Pi Lite+D (NTT ドコモネットワーク向け)を内蔵しており、スタック接続されたシングルボードコンピュータ (Raspberry Pi)には、LTE 通信に必要な candy-pi-lite サービスがインストールされています。

この candy-pi-lite サービスは、電源投入とともに、自動的に起動します。

CANDY Pi Lite+D 及び candy-pi-lite サービスに関する詳細は、CANDY LINE 社の Web 情報 などをご参照ください。

6.1 SIM カードの入手

LTE 通信を利用する場合には、ユーザ様において SIM カードをご用意いただく必要がございま す。SIM カードは、CANDY Pi Lite+ D(NTT ドコモネットワーク向け)が動作する nano SIM が必 要です。対応可能な SIM カードについての最新情報は、CANDY LINE 社の CANDY Pi Lite+の Web ページをご参照ください。

[CANDY LINE / CANDY Pi Lie+] https://candy-line.com/portfolio/candy-pi-lite-plus/

なお、弊社では、以下の SIM カード(NTT ドコモネットワーク用)で動作を検証しています。大手の 通販サイトや家電量販店(店頭、通販)でも、入手が可能です。

[IIJmioプリペイドパック タイプD]
https://s.iijmio.jp/prepaid/

6.2 SIM カードの挿入

LTE 通信をご利用になりたい場合には、本製品のケースを開けたうえで、本製品に内蔵された LTE 通信ボート上の SIM スロットに、SIM カードを挿入していただく必要がございます。

誠に恐れ入りますが、作業の失敗などにより生じた不具合等につきましては、本製品の保証範囲 外になりますのでご了承ください。技術的に不安な方は、弊社で代行(有償サービス)することも可能 ですので、弊社のサービス窓口までご相談ください。

① 上面ケースを外す

本製品の電源をオフにし、PWR スイッチの消灯を確認したうえで、すべての外部接続を外してください。

本製品の底面に4個あるゴム足をすべて外してください。

ゴム足を外した4箇所の穴の奥にビスが固定されています。プラスドライバーを用いて、これら4本のビスをすべて外してください。

本製品の上面ケース(空冷ファンの通気孔があるケース)を上方向に引き抜くことによって、ケースが分解できます。

SIM カードを挿入する

写真の右側に見える黒い基板が LTE 通信ボードです。LTE 通信ボードにおいて、写真の右側の基板端にある CN4 と印字されたスロットに SIM カードを挿入します。SIM カードの金属端子面が下側になるよう(基板と向き合うよう)にして、最後まで差し込んでください。

① 元に戻す

①の逆の手順をたどり、ケースを元に戻してください。このとき、空冷ファンの配線を挟まないよう 特に注意してください。

6.3 APN の設定変更

SIM カードを変更した場合、candy-pi-liteの APN 設定を変更する必要があります。 詳細は、CANDY LINE 社が提供する利用ガイドをご参照ください。

【CANDY Pi Lite / CANDY Pi Lite+ 利用ガイド】 https://candy-line.gitbooks.io/candy-pi-lite/content/

7. EXP 端子の利用(上級者向け)

本製品に内蔵している u-blox 社の ZED-F9P には、様々な I/O 端子が用意されております。 本製品では、上級者の方にこれらの I/O 端子にアクセスしていただけるよう、背面パネルに外部拡張 用の EXT(Expand)端子を実装しています。

EXT 端子を使用するためには、ZED-F9P のマニュアルなどを参照し、ZED-F9P の各 I/O 端子の 機能や制限事項などを詳しく理解したうえで、接続ケーブルの作成など、電子工作の技術と知識も必要 となりますので、これらにご懸念のないような上級者の方のみ、ご使用いただくようお願いいたします。

誠に恐れ入りますが、EXT 端子の使用により生じた不具合等につきましては、本製品の保証範囲外 になりますのでご了承ください。

7.1 ピン番号

ピン数は20ピンで、背面パネルに向かって左上が1番ピンです。

7.2 ピン割当て

各ピンの機能名称は次表の通りです。

番号	機能名称	番号	機能名称
1	3V3	11	TX_READY
2	(Reserved)	12	D_SEL
3	RTK_STAT	13	RESET_N
4	TXD2	14	SAFEBOOT_N
5	RXD2	15	EXTINT
6	GEOFENCE_STAT	16	EXTINT2 *
7	RXD / SPI_MOSI	17	TIMEPULSE2 *
8	TXD / SPI_MISO	18	TIMEPULSE
9	SDA/SPI_CS_N	19	5V1
10	SCL / SPI_CLK	20	GND
*:Rese	rved		

7.3 電源電圧出力

EXT 端子の 3V3(1番ピン)及び 5V1(19番ピン)には、内部の定電圧レギュレータからの電源電 圧(公称電圧 3.3V及び 5.1V)が出力されています。絶対に短絡しないよう十分に注意してください。 なお、ZED-F9Pの VCC(論理レベル)は 3.3V ですので、ZED-F9Pの I/F 端子に誤って 5.1V レベルを入力しないようご注意ください。

7.4 ZED-F9P の I/O 端子への入出力

EXT 端子の3番ピンから18番ピンは、静電保護(ESD 保護)の素子を介して、ZED-F9PのI/O端子に接続されています。各 I/O端子の機能や使用方法などについては、ZED-F9Pのマニュアルをご参照ください。

なお、ZED-F9P の UART (TXD、RXD) 及び I2C (SDA、SCL)は、本製品の内部でシングルボ ードコンピュータへ接続されており、GNSS 受信ボード上でそれぞれを分岐する形で EXT 端子に接 続されています。このため、EXT 端子に外部の機器を接続して UART、I2C 又は SPI を用いた通信 を行う場合には、本製品のシングルボードコンピュータと通信が干渉しないように、GNSS 受信ボード 上の DIP スイッチでシングルボードコンピュータとの内部接続を切り離すことが可能です。

GNSS 受信ボードの DIP スイッチは、6.2節②の写真において、左側の上層にある緑色の基板上 にあり、ZED-F9P のチップ(u-blox のロゴがプリントされています)の右側に実装されています。

ライトハウステクノロジー・アンド・コンサルティング株式会社 (C) Lighthouse Technology and Consulting Co.,Ltd.

8. よくある質問

- Q1 電源端子に 13.8V は接続できませんか。
- A1 本製品に内蔵している電源レギュレータは、スペック上は 25V 程度までの入力を許容しております ので、動作に大きな支障はないと想定されます。ただし、入力電圧が高い際には発熱が大きくなるた め、発熱に十分注意してご使用ください。なお、定格仕様を超えた電圧を入力して使用した結果とし て生じた不具合等につきましては、本製品の保証範囲外になりますのでご了承ください。
- Q2 USB 端子にどんなデバイスが接続できますか。
- A2 例えば USB メモリを接続してデータロギングに使用するなどの活用方法が考えられます。 Raspberry Pi の解説書籍や Web 検索情報などが多くありますので、プログラミングなどに関する情報を含めて、そちらを参照してください。

Q3 空冷ファンの動作音を抑えられませんか。

- A3 両側面にそれぞれ、30mm 角のブラシレス DC ファンが装着されています。これらの電源接続(ブ ロック端子)を引き抜くことで、DC ファンの動作を停止することが可能ですが、筐体設計の小型化もあ り、放熱に不安が生じます。DC ファンを停止した結果として生じた不具合等につきましては、本製品 の保証範囲外になりますのでご了承ください。
- Q4 u-center の使用は可能ですか。
- A4 PC 端末を本製品の F9P 端子に USB 接続することにより、u-blox 社が提供する無償ソフトウェア u-center を使用して ZED-F9P を設定することが可能です。

Q5 ZED-F9Pとの USB 接続(ttyACM0)が認識されません。

A5 ZED-F9P の USB 通信は、通常はシングルボードコンピュータの ttyACM0 に接続されています が、F9P 端子に PC 端末などが接続されている間は自動的に F9P 端子へ自動的に切替されます(2. 2節④)。

その後に F9P 端子の接続が外されますと、シングルボードコンピュータへの接続へ自動的に戻さ れますが、シングルボードコンピュータ側が再接続を認識しない場合があります。この場合には、本製 品を再起動することによって、内部の USB 接続(ttyACM0)を再認識させる必要があります。

Q6 \$GNTXT という NMEA メッセージが出力されます。

A6 そのような事象を弊社でも確認しております。ZED-F9P が出力する Warning メッセージのようで すが、弊社から u-blox の日本代理店にも問い合わせているものの、現在のところ原因は不明で、本 製品の異常は見当たりません。u-blox の日本代理店からも、受信動作、性能に影響はない旨の見解 を得ています。

u-blox 社が提供する無料ソフトウェアの u-center から以下の方法で、Warning の NMEA メッセージ抑止を設定することができます。

- (1) メニュー > View > Messages View を選択し、Messages View を開く。
- (2) UBX > CFG > INF (Inf Messages) を選択する。
- (3) Protocol のドロップダウンリストから 1-NMEA を選択する。
- (4) Warning の行のチェックをすべて(0~4)外す。
- (5) Send ボタンをクリックして設定を反映する。
- (6) メニュー > Receiver > Action > Save Config を選択し、設定を機器に保存する。

なお、本製品の出荷時には、Warning の NMEA メッセージは抑止設定としています。初期化の コマンド(Revert Config)実行など、何らかの原因で u-blox の設定が初期化され、本現象が生じた ものと想定されます。

9. 仕様

本製品の仕様は予告なく変更する場合がございます。

項目	仕様		
■ 本体			
寸法·質量	150×45×100mm (突起部含まず)		
	150×48×110mm (突起部含む)		
	380g (付属品含まず)		
外部端子	DC IN 端子		
	端子形状 : $\phi 2.1/5.5$ mm 標準 DC プラグ(センタープラス)		
	電圧 : 6V		
	最大電流 : 2.5A 以上		
	消費電流(参考) : 0.9A~1.5A ^{**1}		
	* RTK 測位動作時の標準値		
	GNSS 端子(SMA-J)		
	GNSS RF 信号入力及びアクティブアンテナへの直流電源供給		
	直流電圧 : 3.3V±10%(出力電流 15mA 以下において)		
	最大電流 : 50mA		
	LTE 端子(SMA-J)×2		
	LTE 通信アンテナ(付属品)の接続		
	F9P 端子(USB Micro-B) [※] 2		
	ZED-F9Pとの USB 通信及び ZED-F9P への直接給電		
	LAN 端子(RJ-45)		
	Gigabit イーサネット接続(有線 LAN 接続)		
	USB 3.0 端子 (Type A) ×2		
	外部デバイスの接続		
	USB 2.0 端子(Type A)×2		
	使用不可(内部接続に使用)		
	EXT 端子(20P/2.54mm)		
	ZED-F9Pの I/O 端子へのアクセス		
	PPS 端子 (SMA-J)		
	ZED-F9P の TIMEPULSE 端子を出力		
付属品	AC アダプタ 6V 2.8A		
	LTE 通信用 SMA アンテナ(2本セット)		
	Micro SD(ラズベリーパイに組込み)		
動作温度範囲	+10℃~+45℃(ただし、結露なきこと。)		
■ GNSS 受信部			
(u-blox 社 ZED-F9P	の仕様に準ずる)		
GNSS 受信	184-channel u-blox F9 engine ;		
	GPS : L1C/A L2C,		
	GLO : L1OF L2OF,		
	GAL : E1B/C E5b.		

	BDS : B1I B2I,		
	QZSS :L1C/A L2C		
シリアル通信	USB ^{※2} : 本体 F9P 端子経由の外部 USB 接続		
	本体内のシングルボードコンピ	。ュータへ USB 接続	
	UART1 : 本体内のシングルボードコンビ	[°] ュータ〜 URAT 接続	
■ シングルボードコンピュータ			
(ラズベリーパイ財団 Raspberry Pi 4 Model B の仕様に準ずる)			
オペレーティングシステム	Raspbian OS		
イーサネット	RJ-45 Gigabit Ethernet		
ワイヤレス LAN	IEEE 802.11 b/g/n/ac 2.4GHz/5GHz		
Bluetooth	Bluetooth 5.0 BLE		
技術基準適合認証	型式又は名称	:Raspberry Pi 4 Model B	
	認証番号		
	技術基準適合証明(電波法)	:007-AH0184	
	技術基準適合認定(電気通信事業法)	:D190067007	
ワイヤレス LAN 及び	内蔵型		
Bluetooth アンテナ	(本製品のケースを電磁的に被覆/遮蔽しないこと)		
■ LTE 通信部			
(CANDY LINE 社 CANDY Pi Lite +D(NTT ドコモネットワーク向け)の仕様に準ずる)			
対応 SIM	nano SIM (4FF)		
	(動作確認済の SIM については CANDY)	LINE 社の Web を参照)	
対応バンド	4G/LTE :B1 (2.1GHz) / B3 (1.8GHz) / B19 (800MHz)		
技術基準適合認証	型式又は名称	: EC25-J MINIPCIE	
	認証番号		
	技術基準適合証明(電波法)	:211-161102	
	技術基準適合認定(電気通信事業法)	:AD160016211	
*1 起動・シャットダウン動作時において~1.5A。また、RTK 測位動作時に標準 0.9A 程度。			
*2 F9P 端子を使用している間は、ZED-F9P の USB は F9P 端子と接続され、F9P 端子の不使用時には、			
ZED-F9Pの USB はシングルボードコンピュータと接続されます(自動切替)。			

10. 使用上の注意

- ・本製品は日本国内仕様です。日本国外で使用された場合、弊社は一切の責任を負いかねます。 (This product is for use only in Japan.)
- ・本製品による測位結果又は受信データ等の使用により生じた損害について、弊社は一切の責任を 負いかねます。
- ・ 本製品は屋内向け仕様です。
- ・本製品、本取扱説明書及び本製品の仕様等について、予告なく変更する場合がございます。
- ・本製品及び本取扱説明書等は、弊社が知的財産権を有しており、法令により保護されております。こ れらの一部又は全部を無断で複製、複写、転載、改変することは禁じられております。
- ・本取扱説明書に記載されている会社名及び製品名は、各社の商標又は登録商標です。
- ・本製品ご購入後の保守、サポート費用、アップグレードは付帯しておりません。不具合のアップデート を含む本製品の保証期間はご購入後1年間となります。
- ・ 故障修理は、センドバック(弊社宛に郵送又は宅配)対応とさせていただきます。
- ・ご購入後のお問い合わせは、原則として電子メールにて承り、弊社営業時間内での対応とさせてい ただきます。

以上

ライトハウステクノロジー・アンド・コンサルティング株式会社

URL https://lighthousetc.jp/ e-mail support@lighthousetc.jp

MAY 2025

ライトハウステクノロジー・アンド・コンサルティング株式会社 (C) Lighthouse Technology and Consulting Co.,Ltd.

